значительно удилило среднее время жизни животных в опытной группе, а защита от гибели составила всего 9,7%.

Сочетанное введение препаратов защищало от гибели 52% инфицированных животных. Кроме того, введение препаратов значительно увеличивало показатель среднего времени жизни мышей, а также уровень подавления репродукции вируса в головном мозге (Δ = 3,2 лг) животных опытной группы (табл. 2) по сравнению с контрольной группой и группами мышей, которые получали только один препарат.

Выраженная защитная эффективность комбинированного применения препаратов с различным механизмом действия, возможно, связана с влиянием амиксина на многоцентровые мишенные рецепторы клеточных мембран. В результате такого воздействия, вероятно, изменяются степень сродства (аффинности) специфических рецепторов, а также их чувствительность к действию других лекарственных веществ.

Таким образом, впервые установлено, что индуктор интерферона амиксин оказывает потенцирующее действие при его применении в сверхнизких дозах в сочетании с виразолом. Раздельное использование амиксина и виразола в дозах 0,4 и 10 мкг соответственно неэффективно в отношении возбудителя

ПЛЮС — вируса Ханта.

Результаты изучения эффективности сочетанного применения амиксина и виразола свидетельствуют о перспективности их сочетанного использования при проведении клинических исследований в очагах ГЛПС.

ЛИТЕРАТУРА

Извещено действие противовирусного препарата арбидола на репродукцию вирусов гриппа птиц А/H5 в опытах in vitro. Штаммы изолированы от птиц птиц Восточной Сибири и близкородственные вирусам 1997—2000 гг. из Юго-Восточной Азии. Препарат арбидол оказывает селективное миоглобурирующее действие на репродукцию этих вирусов в культуре клеток MDCK.

КЛЮЧЕВЫЕ СЛОВА: вирус гриппа птиц, арбидол, вирусмиоглобурирующая активность

The effect of the antiviral drug arbidol on the reproduction of avian influenza A/H5 viruses was studied in in vivo experiments. The strains were isolated from the wild birds of Eastern Siberia and they were closely related to the 1997—2000 viruses from South-Eastern Asia. Arbidol was shown to exert a selective inhibiting effect on the reproduction of these viruses in the MDCK cell cultures.

Ключевые слова: вирус гриппа птиц, арбидол, вирусмногобурирующая активность

Вирус гриппа (ВГ) А инфицируют различные виды птиц и млекопитающих, включая человека, вызывая пандемию птицевидных эпизоотий [5]. Существенными хозяевами ВГ являются различные виды водных и озерных компаксов. ВГ характеризуются высокой гетерогенно-

стю поверхности бактерий гемагглютинина (HA) и нейраминидазы (NA) и представлены, согласно номенклатуре, 16 подтипу NA и 9 — NA [10]. От птиц изолированы вирусы со всеми известными сочетаниями поверхностных белков.
Вместе с тем, несмотря на антигенну гетерогенность ВГ, только 3 подтипа HA (H1—H3) и 2 — NA (N1—N2) циркулируют среди людей. Периодически отмечается инфицирование людей и других млекопитающих ВГ птиц. Вспышка заболевания гриппом среди людей в Гонконге в 1997 г. впервые показала, что преодоление межвидового барьера птица—человек может достаточно эффективно происходить в естественных условиях. Это был первый случай прямой передачи "птичьего" ВГ A/H5N1 человеку, когда из 18 инфицированных человек 6 умерли. Передача вируса от человека к человеку не выявлена [9, 11, 16]. В октябре 2003 г. во Вьетнаме и Китае из 14 человек (13 детей и 1 взрослый), инфицированных вирусом H5N1, 12 умерли. В 2004 г. количество инфицированных в разных странах Азии возросло. К началу 2005 г. зарегистрировано 45 случаев заболеваний "птичьим гриппом", закончившихся смертельным исходом [7].

Возникновение реассортантов между высокоопатогенными вирусами птиц и эпидемическими ВГ человека представляет реальную угрозу возникновения новых пандемических вирусов. К настоящему времени нет вакцинных препаратов против данного сероварианта, поскольку приготовление стандартной вакцины на куринных эмбрионах затруднено из-за патогенности этих вирусов для эмбрионов.

Все вышеизложенное определяет актуальность разработки и совершенствования тактики имеющихся апобролированных противогриппозных препаратов.

Широкое применение в России для лечения и профилактики гриппа отечественного препарата арбидола, активного в отношении ВГ как A, так и B [1, 4], но отсутствие данных по изучению действия арбидола на ВГ птиц A/H5, которые представляют в настоящее время реальную опасность, послужило основанием для изучения действия данного препарата на эти вирусы.

Материалы и методы

Вирусы и клетки. В работе использовали ВГ A/H5N2 и A/H5N3, изолированные от птиц птиц, мигрирующих из Китая. Изоляты имеют апатогенныый сайт нарезания НА и антигенной и первичной структуре НА близкородственные вирусы, обусловленных вспышки заболевания птиц и кур в странах Юго-Восточной Азии [6, 15]. Вирусы культивировали в алаантозной полости 10-дневных куринных эмбрионов. Клетки MDCK культивировали в 96- и 24-луночных панелях фильтра "Costar" (США) в среде МЕМ с добавлением 10% фетального сыворотки телят ("Gibco", США), 10 мМ глютамина и антибиотиков.

Препараты. В экспериментах использовали следующие препараты: арбидол, синтезированный фирмой "Мастердек", солнцекислый ренатерген (АО "Адамантан", Москва) и виразол (ICN, США).

Цитотоксическое действие (ЦТУ) определяли, как описано ранее [3].

Противовирусную активность исследуемых препаратов оценивали с использованием инфекционного тита в культуре клеток MDCK и уровня экспорсии вирусного антигена в тест-системе на основе IFА.

Пред се заражением клетки MDCK 2 раза промывали средой без сыворотки для снижения возможной неспецифической реакции. Затем добавляли препараты в исследуемую концентрацию в 100 мл среды МЕМ и инкубировали с клетками в течение 1,5 ч. Инфицирование проводили 10-кратными разведениями вирусов на среде МЕМ с добавлением трипсина (TPCK treated, "Sigma", США) в концентрации 2 мкг/мл. Адсорбцию вируса проводили в течение 40 мин при 37°С. Несорбировавшийся вирус удаляли 3-кратной промывкой средой без сыворотки. К клеточному монослою добавляли различные концентрации исследуемых препаратов в среде МЕМ с трипсином в концентрации 2 мкг/мл. Контролем вирус и клеток культивировали эти же среде. Далее планшеты инкубировали в термостате с CO2 в течение 72 ч при 37°С. Учет результатов проводили через 72 ч.

При изучении активности противовирусных препаратов методом ИФА клетки MDCK выращивали в 96-луночных планшетах. Перед заражением вирусом клетки MDCK 2 раза промывали средой без сыворотки для снижения возможной неспецифической реакции. Исследуемые препараты добавляли к клеткам в двухкратной концентрации в 100 мл среды МЕМ. К вирусному контролю добавляли 100 мл среды, а к контролю клеток — 200 мл. После инкубации клеток с исследуемыми препаратами в течение 1,5—2 ч при 37°С в лунки, исключая клеточный контроль, добавляли по 100 мл вируса на среде МЕМ. Множественность заражения составляла 0,1—0,01 ТКЦД на клетку. Все процедуры проводили на среде МЕМ с добавлением трипсина в концентрации 2 мкг/мл. Далее планшеты инкубировали в термостате с CO2 в течение 20 ч при 37°С. После инкубации клетки исследовали под инвертированным микроскопом, чтобы зарегистрировать отсутствие в них цитотоксических и цитопатических изменений. Среду удаляли и клетки фиксировали 80% ацетоном в фосфатно-солевом буфере (ФСБ) в течение 15 мин, хорошо высушили и затем отмывали 3 раза ФСБ с 0,05% тиова-20. Эти и все дальнейшие процедуры отмывки проводили указанным раствором. Затем к клеткам добавляли по 100 мл раствора ФСБ с 1% фетальной сыворотки и 0,05% тиова-20, инкубировали при 37°С 30 мин. После удаления раствора к клеткам добавляли по 100 мл моно克莱альных антител к НР-белку ВГ A в концентрации 10 мкг/мл. После инкубации с антителами в течение 1 ч при 37°С в лунки вносили по 100 мл IgG крошки против IgG мышей, меченных пероксидазой в разведении 1:1000. После 4-кратной отмычки связывания пероксидазу выявляли добавлением в лунки 100 мл 3,3'-5,5'-тетраметилбензедиазина на субстратном буфере. Реакцию учитывали по оптической плотности (ОП) при 450 нм в спектрофотомере фирмы "Биоком" (Россия). Каждое разведение вируса исследовали в 4 повторах, для которых вычисляли среднее значение ОП. Процент ингибирования определяли как (ОПконтроль — ОПпрепарат)/ОПконтроль · 100%.

33
Результаты

Определение ЦИД50 препаратов показало, что для арбидола оно составило 40 мкг/мл, для ремантадина — 60 мкг/мл, а для виразола — 100 мкг/мл.

Изучение противовирусной активности арбидола. В 1-й серии экспериментов изучали действие арбидола в сравнении с таковым ремантадином и виразола на репродукцию ВГ птиц А/Н5 в культуре клеток МДСК. Из табл. 1 следует, что арбидол в концентрации 10 мкг/мл, так же как ремантадин и виразол в концентрациях 5 мкг/мл, эффективно ингибирует репродукцию ВГ птиц. Ингибирующее действие препаратов выражалось в снижении инфекционного титра ВГ птиц в среднем на 2—2,5 лг ТЦИД50/мл в отношении всех исследуемых ВГ птиц А/Н5.

Далее изучали действие различных концентраций арбидола в сравнении с таковым ремантадином и виразола на репродукцию ВГ А/Н5 птиц в тест-системе ИФА при одинаковой множественности заряжения. С целью выяснения специфичности действия препарата на ВГ с различной антигенной структурой ИА в опытах в тех же условиях определяли активность арбидола в отношении традиционных лабораторных штаммов ВГ, относящихся к подтипам, циркулировавшим среди людей ранее: A/PR/8/34 (H1N1) и A/Aichi/68 (H3N2).

Данные о влиянии различных концентраций арбидола на репродукцию ВГ птиц, представленные на рисунке, характеризуют зависимость действия препарата на репродукцию ВГ от его концентрации. Арбидол ингибирует репродукцию ВГ А/Н5 птиц, причем его ингибирующий эффект находится в пропорциональной зависимости от концентрации препарата. Арбидол в концентрации 1 мкг/мл подавлял репродукцию вируса незначительно, а чем свидетельствует величина ОП50. При дозе 5 мкг/мл величина подавления ОП50 увеличивается и при концентрации арбидола 10 мкг/мл составляет 62,96 и 91% для ВГ А/утка/Приморье/2633/01 (H5N3), A/утка/Приморье/2621/01 (H5N2) и A/утка/Алтай/1285/91 (H5N3) соответственно.

Аналогичные графики зависимости вируснинги- бирующего эффекта от концентрации были получены также для ремантадина и виразола. Концентрации препаратов, ингибирующие вирусную репродукцию на 50%, представлены в табл. 2. МИК50 для арбидола составляла 4,4, 3,4 и 7,3 мкг/мл для ВГ А/утка/Алтай/1285/91 (H5N3), A/утка/Приморье/2621/01 (H5N2) и A/утка/Приморье/2633/01 (H5N3) соответственно. Для ремантадина и виразола МИК50 были ниже, чем для арбидола: в отношении ВГ А/утка/Алтай/1285/91 (H5N3) они составляли 0,9 и 1,3 мкг/мл, A/утка/Приморье/2621/01 (H5N2) — 0,7 и 1 мкг/мл и A/утка/Приморье/2633/01 (H5N3) — 0,4 и 3 мкг/мл соответственно.

Обсуждение

Проведенные исследования показали, что арбидол, ремантадин и виразол в культуре клеток МДСК в дозах, нетоксичных для клеток, существенно ингибировали репродукцию ВГ птиц А/Н5, изолированных на территории России от диких птиц. Действие препаратов возрастило с увеличением их концентрации. Арбидол давал достаточно высокий ингибирующий эффект в отношении как ВГ птиц А/Н5, так и ВГ человека.

Сравнительное изучение вируснингирующих концентраций показало, что МИК50 для арбидола была выше, чем для рибавирин и ремантадина. Однако если для выявления МИК50 использовать молекулярные массы виразола и ремантадина в 2 раза и более ниже, чем молекулярная масса арбидола, то различие в МИК50 будет меньше.

Авторы, изучая механизм действия арбидола, показали, что вирусспецифической мишенью его действия в цикле вирусной репродукции явля-
Таблица 2
Минимальная ингибиторная концентрация (МИК_м) для различных противовирусных препаратов в отношении разных штаммов ВГ А/Н5

<table>
<thead>
<tr>
<th>ВГ</th>
<th>МИК<sub>м</sub>, μg/мл</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>рибавирин</td>
</tr>
<tr>
<td>A/укта/Алтая/1285/91 (H5N3)</td>
<td>1,5</td>
</tr>
<tr>
<td>A/укта/Приморье/2633/01 (H5N3)</td>
<td>3,0</td>
</tr>
<tr>
<td>A/укта/Приморье/2621/01 (H5N2)</td>
<td>0,9</td>
</tr>
</tbody>
</table>

еется НА ВГ. Арбидол взаимодействует с НА ВГ, увеличивая его стабильность к конформационным изменениям, индуцированным низким рН, и как следствие ингибирует процесс слияния липидной оболочки вируса с мембранами эндоцит, приводящий к освобождению вирусного нуклеокапсида и началу трансляции вирусного генома [1, 2, 4, 14].

Результаты наших исследований действительно показали вирусоспецифическое действие арбидола на различные подтипы НА: H1N1, H3N2, H5N2, H5N3. Вместе с тем полученные нами результаты указывают на штаммоспецифичный характер противогриппозного действия арбидола, ремантадина и виразола в культуре клеток MDCK в отношении ВГ А/Н5. В частности, репродукция вируса A/укта/Алтая/1285/91 (H5N3), который является наиболее родственным по структуре НА особо опасным вирусам, обусловленных вспышками заболевания среди людей и птиц в Юго-Восточной Азии и Европе (1997–2003 гг.), ингибировалась на 2,5 lg ТИКД₅₀/мл. Арбидол и виразол ингибирировали репродукцию ВГ H5, A/укта/Приморье/2633/01 (H5N3) также несколько слабее по сравнению с другими изолятами из Приморья. Однако этот вирус, по нашим данным, как и вирус A/укта/Алтая/1285/91 (H5N3), вызывал заболевание у мышей без предварительной адаптации (данные не приводятся).

Изучение нескольких штаммов А/Н5, которые различались по структуре рецепторного сайта и геному составу [6, 15], показало, что различия в рецепторной активности ВГ А/Н5 не оказывали существенного влияния на активность арбидола в отношении этих вирусов.

ВОЗ для борьбы с так называемым "птичьим гриппом" рекомендовала применение противогриппозных препаратов. Полагают, что на первом этапе возможной пандемии вирусоспецифические химиопрепараты окажутся единственным средством борьбы. Однако серьезным ограничением применения препаратов адамантанового ряда является быстрое возникновение резистентности к ним [8]. Вирусы H5N1, изолированные от больных людей в 2003–2004 гг. в странах Юго-Восточной Азии, уже были резистентны. Это особенно опасно в условиях пандемии, вызванной высокопатогенным вирусом [7].

В настоящее время доказана эффективность использования ингибиторов НА при гриппе [12, 13], но в России отсутствуют их аналоги, и стоимость этих препаратов импортного производства довольно высока. Кроме того, при ВОЗ, существующие производственные мощности обеспечивают этими препаратами незначительные, и для стран, не производящих, они будут практически недоступны. Таким образом, определяющими выбор противовирусных препаратов, помимо их активности в отношении ВГ, будут такие факторы, как их доступность и стоимость. Этим требованиям в должной мере отвечает арбидол, широко используемый в России.

ЛИТЕРАТУРА